Quiver Mutation Sequences and $q$-Binomial Identities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Fractions and q-Binomial Determinant Identities

Partial fraction decomposition method is applied to evaluate a general determinant of shifted factorial fractions, which contains several Gaussian binomial determinant identities .

متن کامل

The q-Binomial Theorem and two Symmetric q-Identities

We notice two symmetric q-identities, which are special cases of the transformations of 2φ1 series in Gasper and Rahman’s book (Basic Hypergeometric Series, Cambridge University Press, 1990, p. 241). In this paper, we give combinatorial proofs of these two identities and the q-binomial theorem by using conjugation of 2-modular diagrams.

متن کامل

Hybrid Proofs of the q-Binomial Theorem and Other Identities

We give “hybrid” proofs of the q-binomial theorem and other identities. The proofs are “hybrid” in the sense that we use partition arguments to prove a restricted version of the theorem, and then use analytic methods (in the form of the Identity Theorem) to prove the full version. We prove three somewhat unusual summation formulae, and use these to give hybrid proofs of a number of identities d...

متن کامل

A q-analogue of Zhang's binomial coefficient identities

In this paper, we prove some identities for the alternating sums of squares and cubes of the partial sum of the q-binomial coefficients. Our proof also leads to a q-analogue of the sum of the first n squares due to Schlosser.

متن کامل

Some Identities involving the Partial Sum of q-Binomial Coefficients

We give some identities involving sums of powers of the partial sum of q-binomial coefficients, which are q-analogues of Hirschhorn’s identities [Discrete Math. 159 (1996), 273–278] and Zhang’s identity [Discrete Math. 196 (1999), 291–298].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx108